
Quantum Finite Volume Method for Computational Fluid Dynamics
with Classical Input and Output

Zhao-Yun Chen, Cheng Xue, Si-Ming Chen, Bing-Han Lu, and Yu-Chun Wu∗

Key Laboratory of Quantum Information, CAS and
University of Science and Technology of China

Ju-Chun Ding and Sheng-Hong Huang†

Department of Modern Mechanics, USTC

Guo-Ping Guo
Key Laboratory of Quantum Information, CAS

University of Science and Technology of China and
Origin Quantum Computing, Hefei ‡

(Dated: February 9, 2021)

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical methods
to solve fluid flows. The finite volume method (FVM) is an important one. In FVM, space is
discretized to many grid cells. When the number of grid cells grows, massive computing resources
are needed correspondingly. Recently, quantum computing has been proven to outperform a classical
computer on specific computational tasks. However, the quantum CFD (QCFD) solver remains
a challenge because the conversion between the classical and quantum data would become the
bottleneck for the time complexity. Here we propose a QCFD solver with exponential speedup over
classical counterparts and focus on how a quantum computer handles classical input and output. By
utilizing quantum random access memory, the algorithm realizes sublinear time at every iteration
step. The QCFD solver could allow new frontiers in the CFD area by allowing a finer mesh and
faster calculation.

I. INTRODUCTION

Computational fluid dynamics (CFD) is the area that
utilizes numerical methods to obtain the physical prop-
erties of fluids. It has many applications, such as aid in
designing aircraft or automobile. CFD is often related to
solving a series of partial differential equations (PDEs)
and can compute the evolution of physical characteristics
of fluid at a given space, including density, momentum,
and energy. These characteristics would provide us essen-
tial references for the properties of the fluid in the compu-
tational space. There are three typical physical governing
equations of the CFD: Navier–Stokes (NS), Euler, and
Reynold–Averaged Navier–Stokes (RANS) equations.

The finite volume method (FVM) is a typical numer-
ical method to discretize these physical equations. In
FVM, the computational space is discretized into small
cells by dense grid points, separately solving every cell’s
evolution at a small timestep and finally integrating all
time steps. The PDE will be converted to a sparse linear
equation at every time step, whose dimension N has a
linear dependency on the number of cells. In practice,
sparse matrix linear solvers such as the conjugate gra-
dient method are available. The best time complexity
of the conjugate gradient method is O(Nsκ log 1/ε) time
complexity where s is the sparsity number (the maximum

∗ wuyuchun@ustc.edu.cn
† hshnpu@ustc.edu.cn
‡ gpguo@ustc.edu.cn

number non-zero elements in each row or column), κ is
the condition number, and ε is the precision [1]. A typical
problem for the FVM is that when the problem size grows
large, the computing resources will become expensive.

Instead of using classical computers, quantum com-
puting is a promising computing paradigm that offers
exponential acceleration over classical computing ap-
proaches. Many quantum algorithms, including quantum
factorization[2], quantum simulation[3–6], and the linear
system solvers, [7–9] have already appeared to prove this
idea. Thus, we try to accelerate a CFD solver with quan-
tum computing. There were some works about solving
linear PDEs using a quantum computer[10–13]. How-
ever, these methods cannot be directly applied to solve
CFD because the Navier–Stokes equation is a non-linear
PDE, which is not covered by these previous results.

This paper introduces a quantum solver for CFD prob-
lems (QCFD solver) based on classical FVM. We show
that with only classical input, the time cost of each it-
eration step can be reduced to polylogarithmic depen-
dency on the problem size. This provides an exponential
speedup of the FVM. The QCFD solver can fully repro-
duce the result of the FVM. With the output given clas-
sically at every time step, the QFVM is capable of the
steady or unsteady problem with similar configurations.

To apply quantum algorithms to practical problems,
the conversion between the classical and the quantum
data could become a bottleneck, especially when using
the quantum linear solver (QLS) as a submodule[14].
In our algorithm, the input and output are all classical
data. To achieve this, we design a quantum memory lay-

ar
X

iv
:2

10
2.

03
55

7v
1

 [
qu

an
t-

ph
]

 6
 F

eb
 2

02
1

mailto:wuyuchun@ustc.edu.cn
mailto:hshnpu@ustc.edu.cn
mailto:gpguo@ustc.edu.cn

2

out based on quantum random access memory (QRAM)
[15, 16]. At the input stage, the memory layout helps to
implement subprocedures required by the QLS. At the
output stage, we sample the output state and update the
memory classically. We show that these two processes,
which act as the interface between classical and quantum
data, can both run in polylogarithmic time. They enable
us to integrate the quantum linear solver submodule into
the classical FVM to achieve speedup. The time com-
plexity of our algorithm is calculated by scaling the time
between two iteration step, which is

O

(
(s3 + logN)sκ log3N

ε2
polylog(sκ/ε)

)
. (1)

Our algorithm can be compared to the classical algo-
rithm directly. The algorithm has classical input and out-
put and uses the same definition of condition number and
the error threshold. For the condition number problem,
we implement a quantum version of the Jacobi precondi-
tioner and integrate it into the memory layout. It has the
same effect as applying a Jacobi preconditioner, which is
common in the classical FVM. Therefore, both quantum
and the classical algorithm have a linear dependency (if
we ignore the polylogarithmic term) on the same condi-
tion number. We also provide evidence that the quantum
and the classical error threshold are the same under the
sense of l∞ norm.

As a result, compared to the time complexity of the
classical counterpart, the quantum solver runs faster in
terms of the problem size N , but slower in the depen-
dency on the precision with a quadratic term. Our al-
gorithm will have better performance when the problem
size is large enough, i.e., N � 1/ε2. We performed a
numerical simulation on the Onera M6 test case show-
ing that the algorithm can output correctly with such a
condition.

II. PRELIMINARIES

A. Discretization and Linearization of the Physical
Governing Equation

The typical physical governing equations (Euler, NS,
RANS) have to be linearized to apply to the FVM. In
this paper, we do not focus on the detail of the lineariza-
tion. Instead, we apply the identical linearization method
to the classical algorithm and analyze the relationships
among the equation variables.

Here we take a two dimensional NS equation with com-
pressible flow as an example. First write down the dif-
ferential form of the NS equation:

∂

∂t

∫
Ω

UdV +

∮
∂Ω

F · dS = 0, (2)

FIG. 1. The grid cell around ith point. F∂Ω is the flux at the
certain boundary; ∆S∂Ω is the area. Ωi is the volume of this
cell.

where

U =

 ρ
ρu
ρv
ρE

 Fx =

 ρu
ρu2 + p
ρuv
ρuH

 Fy =

 ρv
ρuv

ρv2 + p
ρvH

 ,
(3)

for any volumne Ω and its boundary ∂Ω.
To discretize it spatially and timely, we split the space

and time into small grid cells. At the cell i and time step
n, the NS equation can be discretized to

Ωi
∆t

(
Un+1
i − Uni

)
= −

∑
∂Ω

F n+1
i,∂Ω ·∆Sn+1

i,∂Ω, (4)

where implicit Euler method is applied. We define the
right hand side of the equation (4) as the residual of this
point, denoted by Rn+1

i . The Fi is defined by the dif-

ference scheme, which is calculated by variables ~U in the
surrounding cells. The difference scheme gives a relation
between nodes. In this paper we define a matrix C which
has

Ci,i′ = 1 (5)

if i and i′ are related in the difference scheme. In other
words, Ci,i′ = 1 means calculateing the residual at ith

node uses the variables in jth node. Specially, we always
have Ci,i = 1.

Let ∆~Un+1 = ~Un+1 − ~Un, we have(
Ωi
∆t

δi,i′ +
∂Ri,k
∂Ui′,k′

∣∣∣∣
U=Un

)
∆Uni′,k′ = −Rni,k. (6)

Simply replacing A =
(

Ωi

∆tδi,i′ +
∂Ri,k

∂Ui′,k′

∣∣∣
U=Un

)
, we

obtain a linear equation whose solution implies the time

evolution of the physical variable ~U .
The coefficient matrix A is a sparse matrix. From

equation (4), the Ai,k,i′,k′ is non-zero when i and i′ are

3

related in the difference scheme (Ci,i′ = 1). The sparse
number (number of nonzero element in a row or column)
is fixed by how we select the difference scheme, denoted
by s.

Regardless of the physical governing equation, the dis-
cretization and the linearization following the classical
FVM method do not change. We will finally show that
the spatial or time difference scheme does not affect how
this algorithm works, and only the constant-coefficient
will change in the analysis of the time complexity.

B. Quantum Algorithm with Classical Input and
Output

When we use a quantum computer to cope with a
practical problem, we should always expect that the in-
put and output are classical. Many quantum algorithms
have been proposed and claimed to be faster (exponen-
tially or polynomially) than their classical counterparts.
However, a large portion of them only beats classical al-
gorithm under some theoretical limitations. A typical
example is the famous quantum linear system algorithm:
Harrow-Haddism-Lloyd (HHL) algorithm[7], which can
prepare the state |x〉 encoding the solution of the linear
equation Ax = b. This algorithm uses O(logN) calls to
linear equation oracles, where the classical counterpart
has to perform at least O(N) calls. Based on the ability
to accelerate solving a linear equation, many quantum
machine learning algorithms were proposed and accel-
erated exponentially over the classical algorithm. How-
ever, most of these algorithms did not answer how to
deal with real-world data or obtain a classical output. In
this paper[14], Aaronson raised a series of obstacles for
applying the HHL algorithm on quantum machine learn-
ing algorithms with real-world data. The main problems
include how to input the classical data into the quan-
tum computer and extract information from the output
state given by the HHL algorithm. If we hope to pre-
serve quantum speedup, two operations are forbidden.
One is to prepare the input state |b〉 with an encoded
quantum circuit, where even reading all data entries re-
quires O(N) time; the other is to perform sampling on
the output state to extract the state to a classical vector
with O(N) times measurement.

We believe the obstacles that appeared in “HHL-
based” quantum machine learning algorithms are even
more challenging if we want to accelerate the FVM for
CFD problems quantumly. In the classical method, the
physical governing equation (e.g., Navier–Stokes equa-
tion) will be discretized in both time and space. At every
time step, we linearize the physical governing equation to
a linear equation, and its solution represents the evolu-
tion of the physical variables. Finally, we can integrate all
time steps to obtain a stable solution. The time complex-
ity of the FVM mainly depends on the time complexity of
the linear solver, which is at least O(N). It is straight-
forward to suppose that if we change the linear solver

to a quantum version, we will have a quantum acceler-
ated CFD solver. However, the two problems mentioned
above exist in every step of the time integration. One
is how to generate the input from the physical variables
at one time step; the other is how to update the phys-
ical variables from the quantum linear solver’s output.
In conclusion, the quantum algorithm will fail to demon-
strate quantum advantage if time complexity requires an
extra O(N) multiplier.

Our proposed QFVM algorithm will consider these ob-
stacles. We assume the input and output of this algo-
rithm are all classical, ensuring that this algorithm can
be run in the quantum computer without providing more
input than the classical algorithm.

C. Quantum Random Access Memory

Quantum random access memory is the storage device
for the quantum computer. As the quantum analog of
RAM, QRAM allows a quantum computer to obtain clas-
sical data with given addresses in quantum parallel. In
other words, QRAM could perform such unitary trans-
formation:

UQRAM|i〉A|0〉D = |i〉A|di〉D, (7)

where A and D denote the address and the data registers.
di is a classical data entry stored at the address i.

A seminal architecture called “bucket-brigade” pro-
vides an efficient way for querying. There have been
many proposed physical implementations of such archi-
tecture, such as optical system [15], acoustics system [17],
and circuit quantum electrodynamics[18]. Our work is
based on the QRAM with architecture implemented by
any of the physical systems. To eliminate the difference
in understanding the availability of the QRAM, we list all
assumptions when we apply the QRAM to our algorithm.

First, the QRAM is general to all input addresses and
their superpositions, namely

∑
ci|i〉. The QRAM should

be an arbitrary data loader rather than only allowing to
prepare the

∑
|i〉|di〉 state.

Second, if the address register has been prepared, per-
forming one query costs O(logN) time where the full
data length is N.

Third, we assume a QRAM has at least a classical
RAM capability, enabling access to a single entry or over-
laying it to another value with constant time. Meanwhile,
the QRAM should be compatible with a classical com-
puter. A classical computer can read the data in QRAM
without extra cost.

Even though a real physical implementation of QRAM
is hard, these assumptions are reasonable because they
do not exceed the capabilities of the previous physical
implementations.

We claim our algorithm as “classically input and out-
put” under the sense that the input and output of the
algorithm are stored in the QRAM. Because we believe
in the compatibility of QRAM and classical computer,

4

the problem definition, data initialization, and post-
processing of the calculation results can all be performed
in a connected classical computer.

III. QUANTUM FINITE VOLUME METHOD

This section introduces the quantum finite volume
method (QFVM) for CFD problems based on the im-
plicit Euler method and classical FVM. As described in
the preliminary section (II A), the Euler, NS, or RANS
equation can be discretized timely and spatially and fi-
nally linearized following specific classical methods. We
do not focus on these methods but only transplant them
into a quantum version based on the theory that any
classical function can be implemented in a quantum com-
puter.

Take a two-dimensional Euler equation with compress-
ible gas (density, X- or Y-directional momentum and en-

ergy) as the example. The physical variable ~U contains
the physical properties of all grid cells. We discretize the

computing space into N grid cells, then the size of ~U is
4N. We use a two-level subscript (i, k) to identify a single

element in ~U by Ui,k, where i denotes the ith grid cell and
k denotes the kth physical characteristics.

The time evolution of ~U is realized by solving the lin-
earized NS equation using implicit Euler time iteration
scheme. The calculation is iterative, and we use a sub-
script n to denote the nth iteration step. At any time
step, the equation has a general form:

An(~Un)∆~Un+1 = −~Rn(~Un), (8)

where A is the Jacobian matrix and ~R is the residual
vector. These two parts are determined by the physical

variable ~U at nth step. The unknown is ∆ ~Un+1. The
system evolves one step by calculating

~Un+1 = ~Un + ∆~Un+1. (9)

Similar to the definition of Ui,k, the matrix element of

A is denoted by Ai
′,k′

i,k . Element in ~R is denoted by Ri,k.

The initial state of the physical variable ~U0 should have
been stored in QRAM. It is given as the input of the
algorithm. Another part of the input is about the spatial
grid points, which split the space into cells. These data
should also be stored in the QRAM, ready for quantum
query.

Our work mainly concentrates on how to bridge the
gap between quantum processes and classical processes.
On top of our work, we design a QRAM-based memory
layout inspired by previous works[19]. The details about
the memory layout are introduced in section IV.

Alike the classical program, the QRAM stores the

physical variable ~Un to construct the linear equation at
the step n. Besides this, we also prepare the residual vec-

tor ~R and a sum tree With the memory layout design, one

can construct three quantum subprocedures OA, Ob, and
Ol required by the QLS. They encode the linear equation
as unitary transforms, that is:

OA|i, k, i′, k′〉 = |i, k, i′, k′〉|Ai
′,k′

i,k 〉, (10)

which encodes the Jacobian matrix’s element, and

Ob|i, k〉 = |i, k〉|Ri,k〉, (11)

which encodes the residual vector’s element, and

Ol|i, p〉 = |i, Ci(p)〉, (12)

which encodes the pth related cell in the difference
scheme.
Ol can be implemented directly by the geometry defini-

tion input with constant queries. OA also requires query-
ing the geometry definition to obtain the O(s) number
of Ui at the related cells. Implementation of Ob is intro-
duced in section IV B.

With these three quantum subprocedures, QLS out-

puts a solution |~u〉 = | ∆~Un+1

‖∆~Un+1‖2
〉, a normalized solution

of the linear equation. Now we are able to construct
a procedure P which can prepare the |~u with sublinear
time.

Taking P as the input of the l∞ tomography algorithm,
we can obtain a classical vector ũ which is ε-close to the
quantum solution ~u. This algorithm requires to run P
and its controlled version by O(logN

ε2) many times. As a
result, obtaining ũ requires sublinear time.

Meanwhile, we can apply amplitude estimation[20] to

P to obtain the normalization factor cl = ‖∆~Un+1‖2.
we use ũ and cl to update the sum tree and finish this
iteration step.

For a steady problem, the computing stops in two
cases. One is when the residual is smaller than the con-
vergence limit ε, which can be extracted from the top of
the tree. Another is when reaching the maximum itera-
tion steps. After stopping, the output of this algorithm
is stored in the physical variable area.

IV. QUANTUM MEMORY LAYOUT FOR
QFVM ALGORITHM

To reduce data transfer costs between quantum and
classical data, we design a memory layout to efficiently
prepare the residual vector state and prepare the oracular
input of the quantum linear solver.

The QRAM stores three kinds of data. The first is the
geometry data of the problem definition. From this, we
can query the connection relation between cells (geome-
try definition) in quantum parallel. These are constant
during the calculation and used for constructing the lin-
ear equation. Querying this part is equivalent to this
unitary transform:

Ps|i〉|j〉 = |i〉|ij〉. (13)

5

FIG. 2. Schematic of the quantum memory layout. (a)Three parts of the QRAM memory layout: geometry definition area,

which holds the input of the problem; physical variable area holding the ~Un; and the residual sum tree. (b)The linear structure
of the geometry definition area. This area is formed with N blocks. The ith block holds s related indices where each of i′ = ik
(0 6 k < s) satisfies Ci,i′ = 1. (c)The linear structure of the physical variable area. Each block the physical variables ~Ui at the

cell i. (d)The binary tree structure of the residual sum tree. The tree’s leaves are the components of the residual vector ~Rn.

Then for each level, we sum up the square of every two nodes. The tree root is ‖~R‖2.

The second is the vector of the physical variable at the

step n, namely ~Un. From this part we can implement

PU |i, k〉|0〉 = |i, k〉|Ui,k〉. (14)

The third is the residual vector ~Rn and its pre-
computed sum. We call it the sum tree. From the bot-
tom to the top of the binary tree, every node stored an
integration necessary to prepare the residual state. We
define each node’s address as ar(p) from the top of the
sum tree. p is a binary string where every digit repre-
sents the left/right branch with 0/1. For example, ar(0)
is the address of the left child of the root; ar(0, 1) is the
right child of the node at ar(0). Specially, we directly use
ar to represent the root’s address. We place all nodes in
the QRAM linearly, where each node’s address ar(p) can
be computed efficiently. The data contained in address
ar(p) is denoted by SR(p). Thus we can perform such
unitary transform:

PR|ar(p)〉|0〉 = |ar(p)〉|SR(p)〉. (15)

The second and the third part will be initialized once
at the beginning of the calculation. They will be continu-
ously updated through the calculation. The final steady

result, which is ~U at the last iteration step, is also stored
in them.

The diagram of the memory layout is demonstrated in
figure IV. The functions of this memory layout are as
follows:

• Initialize the sum tree will classically access the
QRAM O(N) times;

• With access to the sum tree, one can prepare |R〉
with O(logN) times of quantum queries to the
QRAM;

• If the sparsity of the Jacobian matrix is s, updating

a single entry of ~U will classical access the QRAM
O(s logN) times to update the sum tree;

• The normalization factor between the residual vec-
tor and its corresponding quantum state can be ob-
tained with one quantum query;

• Evolution from Un to Un+1 will cost
O(C log2N/ε2) time.

We clearly state the difference between “classical ac-
cess” and “quantum query”. Classical accessing means

6

only one data entry is read and modify at a time. Quan-
tum query means a unitary transform is performed,
simultaneously extracting many data queries into one
quantum register using the superposition addresses.

In the following part, we will show how these features
are realized.

A. Initialization

The initialization process fills the QRAM as the mem-
ory layout scheme shows. The first step is to write in

the initial physical variable ~U and fill the tree with the
wanted sum.

The initialization is entirely a classical process. Along
with writing the data, we should also record the memory
layout to quickly obtain the memory address of every
data entry in constant time.

There may be some concentrations about whether such
O(N) preparation time will cause the vanishment of this
algorithm’s speedup. We believe after considering the
time consumption of initialization, the quantum speedup
still preserves. We analyze the three things that con-
tribute to initialization time.

One is the calculation of the residual vector ~R. The
calculation of this vector exists at every step of the classi-
cal FVM in a CFD problem. Even in classical algorithms,
this part is not the bottleneck of the time. Our algorithm
only calculates the residual once initially, which will con-
sume much less than a classical algorithm does.

The second is the fill of the sum tree. To fill a sum tree
only requires repeatedly adding the sum of the square of
the residual vector. It is natural to think this process is
easier than the calculation of the residual vector.

The third is about the cost of accessing the QRAM
classically. As we have mentioned in section II C, we as-
sume the QRAM has the near capability of RAM, which
allows the access to be performed in constant time.

B. Preparation of the residual vector state |~R〉

According to the method described in [21], the state

|~R〉 could be prepared efficiently because we have access
to all wanted sums of the vector. We pre-compute them
in the sum tree, so the preparation can be realized by
querying the sum tree PR.

The first step is to query the tree root and its left child
node, then calculate the rotating angle at this step:

|ar(0)〉|SR(0)〉|ar〉|SR〉|θ〉|0〉, (16)

where SR(0) =
∑
i∈[0..N/2−1]R

2
i , SR =

∑
i∈[0..N−1]R

2
i ,

θ = arccos SR(0)
SR

.
Now perform a conditional rotation and uncompute,

we have:

cos θ|0〉+ sin θ|1〉. (17)

Add another qubit, perform Hadamard gate on it, we
have

(cos θ|0〉+ sin θ|1〉) 1√
2

(|0〉+ |1〉) (18)

=
1√
2

(cos θ|00〉+ sin θ|10〉) (19)

Then we iteratively perform the query, computing the
rotating angles and conditional rotation. At kth step, we
have the state ∑

cki |i〉
1√
2

(|0〉+ |1〉). (20)

Computing the addresses of |i, 0〉, |i, 1〉 , we obtain the
real addresses ar(i, 0) and ar(i, 1) in the QRAM, that is∑

cki |i〉
1√
2

(|0〉|ar(i, 0)〉+ |1〉|ar(i, 1)〉, (21)

then query to the PR to obtain the rotating angles and
uncompute extra registers. Finally, after performing con-
ditional rotation, we step to∑

ck+1
i |i〉 (22)

Repeatedly performing this process, we can

efficiently prepare the residual state |~R〉 =

−
∑
Ri|i〉/

√∑
j∈[0..N−1]R

2
j with the help of the

sum tree.

C. Updating a single entry of the physical variable

From step n to n+1, the physical variable ~U should be

updated. Same as the computing ~R and its sum from ~U ,
only the residual on the related cells would change. From
the tree leaves, we change the all residual Ri′,k′ related
to the changed Ui,k with Ci,i′ = 1. After these residual
vector entries change, we again compute the sum tree
from the leaves to the root and update correspondingly.
The number of updated nodes will not exceed the number
of the multiplication of the related residual entries O(s)
and the number of layers of the sum tree logN .

As a result, the cost of update one entry of ~U is less
than O(s logN).

D. Sampling the solution state and update the
QRAM

The QLS outputs the solution as a quantum state.
However, we cannot directly extract it to a classical vec-

tor to update ~U . We need to cope with two problems:
first is to decide the normalization factor of the solution;
the second is to convert the quantum state to a classical
vector.

7

The tomography algorithm only produces a normalized
vector ∆Ũn+1. We should also obtain all the normalized
factor in the algorithm to get a real update vector of
~Un+1. QLS produces two factors. First is cb, which is
generated when preparing |b〉 and can be obtained from
the data structure described above. The second is cl
which is generated from the QLS, because matrix inver-
sion is usually not unitary and the raw solution A−1b
is not normalized. With amplitude estimation, we can
compute the probability pl and then obtain the factor by
cl = α

√
pl, where α is a constant in the QLS. Obtaining

the normalization factors will not affect the asymptotic
time complexity of the algorithm.

Combining these two factors c = cbcl, we obtain the

norm of solution ‖∆~U‖2, which implies the variation up-

dated on the target vector ~U in the CFD solver. When
the norm of the variation is smaller than a preset thresh-
old, we can stop the iteration and return the result.

With l∞ tomography[22] we could efficiently produce

an l∞-close sample ∆Ũn+1 of a real-valued quantum

state |∆~Un+1〉 with O(logN
ε2). This sampling algorithm

has a logarithmic dependency on N, enabling each itera-
tion step of our algorithm to run at polylogarithmic time
complexity over the input size N.

Updating the QRAM from the sampled vector is also
efficient. The l∞ tomography algorithm produces a
sparse classical vector with not more than O(logN/ε2)
non-zero elements, which means the updating will be
performed for less than O(logN/ε2) times to update the
QRAM PU in one iteration step. This results in efficiency
in both sampling and updating.

V. IMPLEMENTATION OF QUANTUM
PRECONDITIONER

The condition number of the linear equation represents
to what extent the solution can be affected by the per-
tubation on the right-hand-side vector. The condition
number is defined as:

κ(A) =
|λmax|
|λmin|

, (23)

where |λmax| and |λmin| is the maximum/minimum
absolute of the eigenvalues of A. When the condition
number is large, we say the equation is ill-conditioned,
requiring high precision and time complexity to solve.
The time complexity of the classical sparse linear solver
has a dependency on the condition number. For example,
the time complexity of the conjugate gradient method is
O(κsN log 1/ε). The QLS used in our algorithm also has
a linear dependency on the condition number.

Preconditioner is a pre-processing method that can re-
duce the condition number of the equation. If we have
a matrix P such that κ(PA) < κ(A), we can transform

this equation as:

A~x = ~b⇔ PA~x = P~b. (24)

Preconditioners are constructed from the raw equation,
and there have been many types of preconditioners. How-
ever, not all classical preconditioners could be directly
transplanted to quantum versions. First, the matrix mul-
tiplication by the preconditioner should be computed ef-
ficiently, namely within O(polylog(N)) time. Second, the
preconditioned matrix should also be sparse; otherwise,
it cannot be efficiently solved by the QLS. Some precon-
ditioners suitable for QLS have already proposed in [23]
and [24]. We here display an example preconditioner: the
blockwise Jacobi preconditioner, which is widely used in
the classical CFD solver. We implement the blockwise
Jacobi preconditioner in our algorithm without affecting
the asymptotic complexity on the problem size N.

Apply Jacobi preconditioner to subprocedures
Jacobi preconditioner uses the inverse of the diagonal
block. For the raw linear equation, we construct sub-
procedures as the input of the QLS. The preconditioned
equation has a different matrix and vector; therefore,
these subprocedures should be modified.

Let Ã = PA and ~R′ = P ~R, where P is the Jacobi
preconditioner of the matrix A. The element of the P is

P i′,k′

i,k = δi,i′B
i′,k′

i,k , (25)

where Bi′,
i, represents the inverse of the block Ai′,

i, .

The element of Ã is

Ãi
′,k′

i,k =
∑

j∈[0..N−1];l∈[0..nvar−1]

P i′,k′

j,l Aj,l
i′,k′ . (26)

The Jacobi preconditioner P is blockwise diagonal. We
can simplify the equation (26) as:

Ãi
′,k′

i,k =
∑

l∈[0..nvar−1

]P i,k′

i,l Ai,l
i′,k′ . (27)

This implies that computing a single element of Ã re-
quires to queries nvar elements of A. Another fact is that
the sparsity matrices of Ã and A are the same when they
are symmetric to the diagonal line. This is often true be-
cause in the difference scheme, i and i′ are related so that

Ai
′,k′

i,k and Ai,k
′

i′,k are all non-zero elements.

When it is efficient to implement OA, O′A will also be
efficient to implement. That is

O′A|i, k, i′, k′〉|0〉 = |i, k, i′, k′〉|Ãi
′,k′

i,k 〉. (28)

First we query all elements required for computing the
inverse at (i, i′) block and compute the inverse, we have

|i〉|Bi,i, 〉regs(A). (29)

8

We use Bi
′,
i, to represent a matrix block with n2

var ele-

ments. The subscript “regs(A)” mean we require a group
of quantum registers to hold this matrix, marked by A.

The corresponding block in A is also queried,

|i, i′〉|Ai
′,
i, 〉regs(B), (30)

Combining two register group A and B, we obtain the
wanted element Ai,k,i′,k′ . Computing one element re-
quires n2

var times of calls to the OA, namely propotional
to O(s2).

From the above derivation, the sparsity of Ã is same
with the A. Therefore Ol remains unchanged.

The subprocedure Ob should also be modified. In the
original description of the memory layout, the sum tree
stores the pre-computed residual vector. In the precon-

ditioned version, the ~R is replaced by ~R′. When the ~U
changes according to the sampling results, we need to
compute the preconditioned residual vector and update
the sum tree. Computing any element of R′i,k is still re-
lated to all connected cells, which is

R′i,k =
∑

k′∈[0..nvar−1]

P i,k
i,k′Ri,k′ (31)

The complexity of this process is also contributed by com-
puting the diagonal block’s inverse of A.

From the modified sum tree, constructing such O′b is
similar to O′A.

VI. RUN TIME ANALYSIS

The time cost for the QCFD algorithm has two main
contributions. One is the cost of the initialization of the
memory layout (initialization cost); the other is the time
complexity between two iteration steps (evolution cost).

Initialization cost In section IV A, we estimate the
time cost of the initialization stage. The conclusion is
that the initialization stage has O(N) time complexity.
However, under the assumption about the QRAM’s ca-
pability (see section II C), the initialization cost would
not cost much more than the preprocessing stage of the
classical FVM. Because the initialization of QCFD only
processes once, but classical FVM has to preprocess it as
many times as the iteration steps, we believe this cost
would not become the bottleneck of the QFVM algo-
rithm.

Evolution cost Every evolution stage. In [9], Childs
et al. provide a linear solver algorithm with logarith-
mic dependence on precision. They show that the query
complexity of this algorithm of OA, Ol and Ob are
O
(
sκpolylog(sκε)

)
. Now we start to analyze the time

complexity of constructing these subprograms from the
initial problem settings.

According to the results in the previous sections, the
number of queries to QRAM for implementing OA, Ol,
and Ob is O(s), O(1), and O(logN), correspondingly.
The time complexity of preconditioned O′A has a multi-
plier of O(s3) contributed by computing the inverse of
the diagonal blocks of (A). The preconditioned O′b has
the same complexity as Ob.

Now consider the time cost of sampling and updating.
We run the QLS with O(logN

ε2) times to obtain an l∞-
close classical vector. This becomes another multiplier
to the time complexity of the quantum procedure.

The last multiplier is the cost of querying the QRAM.
As we have assumed, the QRAM use O(logN) time to
perform one query. By composing these results, the time
complexity of the quantum procedure is

O

(
(s3 + logN)sκ log3N

ε2
polylog(sκ/ε)

)
. (32)

The final step is to update the sum tree. Updat-
ing a preconditioned residual tree has two steps. One
is to compute the preconditioned residual, where each
term will involve in another inversion of the matrix A,
which is O(s3); the other is to update the tree from
bottom to the top, this involves O(logN) times for one

change in the bottom of the tree. While at most O(logN
ε2)

terms of ~U changes, the time cost of updating the tree
is O(s3 log2N/ε2). The total time complexity is the ad-
dition of the quantum and the classical procedure. Be-
cause the quantum procedure’s complexity is asymptot-
ically greater than the classical’s, we conclude that the
evolution time cost has the time complexity shown in
equation (32).

The classical counterpart’s time complexity is
O(Nsκ log 1/ε) when using CG as the linear solver. Our
algorithm outperforms the classical algorithm on the
problem size’s dependency but has worse performance
when the problem requires high precision. When the
problem size N and the requirement of the precision ε
has such relation N � 1/ε2, the quantum algorithm will
potentially have better performance on time.

VII. NUMERICAL SIMULATION

To prove our algorithm’s effectiveness, we performed
simulation on a test case to find whether a big size prob-
lem with low error sensitivity exists.

An open-source classical CFD simulation software,
SU2[25], is selected as the example. We appended quan-
tum error in the simulation process, output the evolution
history, and compared it to the classical solver. The er-
ror is implemented by biasing the solution vector with a
randomized error to emulate the sampling process of the
l∞ tomography. Except for the error, we preserved all
physical problem configurations, including the mesh set-
ting and physical parameters like temperature or Mach
number. The multigrid option was turned off so that the

9

linear equation will only be solved once in every iteration
step. The linear solver parameters are chosen to be as
precise as possible to emulate the case that the quantum
linear solver produces the result accurately.

We select the inviscid flow around Onera M6 airfoil
as the test case, which has 108396 grid points, and the
physical governing equation is the three-dimensional Eu-
ler equation. We compare the classical result with dif-
ferent error settings: from 5e-2 to 1e-5. The results are
displayed in figure 2. When the error is set to 5e-2 quickly
diverges. Except that, all cases converge correctly. The
black line is the classical baseline. The maximum con-
vergence error ε1 of this case is between 5e-2 and 3e-2,
where quantum advantage preserves.

To simulate the quantum effect, we biased the solu-
tion vector with a specific error to emulate the sampling
process of the l∞ tomography. This is implemented as a
postprocessor of the linear solver.

We focus on the convergence history of test cases and
define two kinds of error thresholds. The first is “maxi-
mum convergence error ε1”, the maximal value which al-
lows the convergence. The problem will quickly diverge if
the error is larger than the first threshold. The second is
“maximum stable error ε2”, where the problem will have
the same convergence history if the error is less than this
threshold. The convergence speed will be gradually slow
when the error gets larger between the first and the sec-
ond threshold. If the maximum stable error is large, we
define this kind of problem as “quantum friendly” be-
cause the quantum algorithm is much likely to run faster
than the classical. In this case, the problem size is large,
satisfying N � 1/ε2. This provides evidence that quan-
tum advantage can be realized in CFD problems.

VIII. ERROR ANALYSIS

The time complexity of the QFVM has better perfor-
mance on the number of grid cells N but worse on the
precision ε, which implies that the problem size should
be large enough to show the quantum advantage. On the
other side, the numerical simulation shows that the pre-
cision should be small. Otherwise, the time integration
will not converge. There is the problem: if the precision
requirement has some dependency on the problem size,
the quantum acceleration will decrease or even vanish. In
this section, we will provide evidence that the precision
will not grow with the problem size.

First, we calculate the total error generated by the
quantum sampling with error bound ε specified. At one

step, we define the physical variable ~U and its update

∆~U . In QFVM, the quantum process outputs a quantum

state |u〉 which is propotional to ∆~U ,

∆~U = ‖∆~U‖2u. (33)

The l∞ tomography outputs a classical vector ũ which

is ε-close to u. At any index i, we have

ui = ũi + ei, (34)

where the error term |ei| < ε.
Now we consider the amplitude of the ei. When per-

forming l∞ tomography, the output vector is a sample
from the multinomial distribution where the sampling
number M = C logN/ε2 and the probability distribution
(|u0|2, |u1|2, ... |uN−1|2). At any term, the standard er-

ror of such sample is: σi =
√
M |ui|2(1− |ui|2). When

|ui| is small enough, we have σi ∼ |ui|
√
N . Now we as-

sume the error ei is approximatedly linear dependent on
the standard error σi, thus we have

ei = O(σi) ∼ O(|ui|
√
N). (35)

The update vector output by the QFVM should be

multiplied by ‖∆~U‖2. As a result, the total error will be
amplified by this coefficient.

Ei = ‖∆U‖2ei. (36)

Compare two cases describing the same problem where
one has N cells and the other has kN (mark the variables
with extra prime, e.g. u′). We can assume the distribu-

tion of ∆~U and ∆~U ′ is the same because the physical
characteristic does not change. From this, we have

‖∆U ′‖22 = k‖∆U‖22, (37)

because only the vector size changes to k times. From the
definition of u (equation (33)), this results in the decrease
of the amplitude of the u, i.e.

u′i =
1√
k
ui. (38)

Combining equation (35), (36) and (38), we obtain that
Ei = O(Ui). This result implies that the total error
generated by the quantum sampling will not change over
the problem size N .

IX. CONCLUSION

This paper developed a quantum version of the finite
volume method (QFVM) for solving the CFD problem
with substantial speedup. Identical to the classical FVM,
the QFVM is iterative and can output the evolution his-
tory of the fluid flow in the computing space. The input
and output of the algorithm are both classical data. In
conclusion, we give the time complexity of between each

step is O
(

(s3+logN)sκ log3N
ε2 polylog(sκ/ε)

)
, where N is

the number of cells (the problem size), κ is the condition
number of the linear equation, s is the sparsity of the
Jacobian matrix, and ε is the precision threshold of the
output. Compared to the classical solver’s best time com-
plexity, which has a linear dependency on the grid size

10

FIG. 3. Results of the simulation. The test case is the three-dimensional inviscid flow around the Onera M6 airfoil. a)
Convergence history of the test case of the quantum solver with different error setting, compared to the classical solver as
the baseline (use BCGStab as the linear solver). The error is set from 5e-2 to 1e-5. Except ε=5e-2, all other cases converge
correctly. The maximum convergence error is approximately 3e-2. b) Flow density around the airfoil at quantum error ε=3e-2.
This result is the same as the classical solver’s result displayed in subfigure d). c) Bad solution at ε=3e-2. The flow density at
20 iteration steps is not correctly computed. d) The solution output by the classical solver.

N , this algorithm is exponentially faster. The speedup
would be significant when we choose an extremely large
N , which allows the quantum computer to solve complex
CFD problems, such as tackling a larger space or finer
mesh.

We use the QLS to accelerate the solution of the lin-
ear equation. However, previous works often ignore the
cost of transferring data between quantum and classical
computers. To achieve an efficient transfer, we design a
memory layout based on the QRAM. The memory layout
stores the problem configuration and the internal result.
With a quantum parallel query, one can implement quan-
tum subprocedures necessary for the QLS; it is also up-
dated efficiently when the algorithm iterates over steps.

Numerical simulations are conducted to check whether
the final result is affected by the quantum error. The
problem size of the test case is 1e5, and the QCFD solver
converges correctly at ε=3e-2, after around 200 steps.
This result shows that CFD could have strong error tol-

erance with large problem size; therefore, the quantum
advantage preserves.

Our future work will focus on how precision affects the
final result and the convergence history, and how to opti-
mize it. We believe that the quantum computer will show
its advantage in solving a more complex CFD problem
shortly.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants Nos. 11625419), the
National Key Research and Development Program of
China (Grant No. 2016YFA0301700), the Strategic Pri-
ority Research Program of the Chinese Academy of Sci-
ences (Grant No. XDB24030600), and the Anhui Initia-
tive in Quantum Information Technologies (Grants No.
AHY0800000).

[1] J. R. Shewchuk, An Introduction to the Conjugate Gradi-
ent Method Without the Agonizing Pain (Carnegie Mel-

lon University, 1994).

11

[2] P. W. Shor, Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer,
SIAM review 41, 303 (1999).

[3] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum sim-
ulation, Reviews of Modern Physics 86, 153 (2014).

[4] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and
R. D. Somma, Exponential improvement in precision
for simulating sparse hamiltonians, in Proceedings of the
Forty-sixth Annual ACM Symposium on Theory of Com-
puting , STOC ’14 (ACM, New York, NY, USA, 2014) pp.
283–292.

[5] D. W. Berry, A. M. Childs, and R. Kothari, Hamilto-
nian simulation with nearly optimal dependence on all
parameters, in 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science (IEEE, 2015) pp. 792–
809.

[6] P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero,
J. R. McClean, R. Barends, J. Kelly, P. Roushan,
A. Tranter, N. Ding, et al., Scalable quantum simula-
tion of molecular energies, Physical Review X 6, 031007
(2016).

[7] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum al-
gorithm for linear systems of equations, Physical review
letters 103, 150502 (2009).

[8] A. Ambainis, Variable time amplitude amplification and
a faster quantum algorithm for solving systems of linear
equations, arXiv preprint arXiv:1010.4458 (2010).

[9] A. M. Childs, R. Kothari, and R. D. Somma,
Quantum algorithm for systems of linear equations
with exponentially improved dependence on preci-
sion, SIAM Journal on Computing 46, 1920 (2017),
https://doi.org/10.1137/16M1087072.

[10] A. M. Childs, J.-P. Liu, and A. Ostrander, High-precision
quantum algorithms for partial differential equations,
arXiv preprint arXiv:2002.07868 (2020).

[11] F. Fillion-Gourdeau and E. Lorin, Simple digital quan-
tum algorithm for symmetric first order linear hyperbolic
systems, arXiv preprint arXiv:1705.09361 (2017).

[12] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum al-
gorithm for simulating the wave equation, arXiv preprint
arXiv:1711.05394 10.1103/PhysRevA.99.012323 (2017).

[13] Y. Cao, A. Papageorgiou, I. Petras, J. Traub, and
S. Kais, Quantum algorithm and circuit design solv-

ing the poisson equation, arXiv preprint arXiv:1207.2485
10.1088/1367-2630/15/1/013021 (2012).

[14] S. Aaronson, Read the fine print, Nature Physics 11, 291
(2015).

[15] V. Giovannetti, S. Lloyd, and L. Maccone, Architectures
for a quantum random access memory, Physical Review
A 78, 052310 (2008).

[16] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum ran-
dom access memory, Physical review letters 100, 160501
(2008).

[17] C. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu,
R. J. Schoelkopf, S. M. Girvin, and L. Jiang,
Hardware-efficient quantum random access memory
with hybrid quantum acoustic systems, arXiv preprint
arXiv:1906.11340 (2019).

[18] R. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu,
N. Earnest, D. McKay, J. Koch, and D. Schuster, Ran-
dom access quantum information processors using multi-
mode circuit quantum electrodynamics, Nature commu-
nications 8, 1904 (2017).

[19] I. Kerenedis and A. Prakash, Quantum recommendation
systems, (2016).

[20] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quan-
tum amplitude amplification and estimation, (2000),
arXiv:quant-ph/0005055.

[21] L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distribu-
tions, (2002).

[22] K. Iordanis, L. Jonas, and A. Prakash, quantum algo-
rithms for deep convolutional neural networks, arXiv
preprint arXiv:1911.01117 (2019).

[23] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Precon-
ditioned quantum linear system algorithm 10.1103/Phys-
RevLett.110.250504 (2013), arXiv:1301.2340.

[24] C. Shao and H. Xiang, Quantum circulant precon-
ditioner for linear system of equations 10.1103/Phys-
RevA.98.062321 (2018), arXiv:1807.04563.

[25] T. D. Economon, F. Palacios, S. R. Copeland, T. W.
Lukaczyk, and J. J. Alonso, SU2: An Open-Source Suite
for Multiphysics Simulation and Design, AIAA Journal
54, 828 (2016).

https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1137/16M1087072
https://arxiv.org/abs/https://doi.org/10.1137/16M1087072
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1088/1367-2630/15/1/013021
https://arxiv.org/abs/arXiv:quant-ph/0005055
https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1103/PhysRevLett.110.250504
https://arxiv.org/abs/arXiv:1301.2340
https://doi.org/10.1103/PhysRevA.98.062321
https://doi.org/10.1103/PhysRevA.98.062321
https://arxiv.org/abs/arXiv:1807.04563
https://doi.org/10.2514/1.J053813
https://doi.org/10.2514/1.J053813

	Quantum Finite Volume Method for Computational Fluid Dynamics with Classical Input and Output
	Abstract
	I Introduction
	II Preliminaries
	A Discretization and Linearization of the Physical Governing Equation
	B Quantum Algorithm with Classical Input and Output
	C Quantum Random Access Memory

	III Quantum Finite Volume Method
	IV Quantum memory Layout for QFVM Algorithm
	A Initialization
	B Preparation of the residual vector state |
	C Updating a single entry of the physical variable
	D Sampling the solution state and update the QRAM

	V Implementation of Quantum Preconditioner
	VI Run Time Analysis
	VII Numerical Simulation
	VIII Error Analysis
	IX Conclusion
	 Acknowledgments
	 References

